Chap2. Tools for exploring functional data

2.2 Some notation

2.3 Summary statistics for functional data

cor-plot

cross-cor-plot

2.5 Phase-plane plots of periodic effects

phase-plane-plot

Chap3. From functional data to somooth functions

From discrete to functional data

\[y_j = x(t_j) + \epsilon_j\]

or in matrix notation

\[\mathbf{y} = x(\mathbf{t}) + \mathbf{e}\]

where \(\text{Var}(\mathbf{y}) = \mathbf{\sigma}_e = \sigma^2\mathbf{I}\).

The resolving power of data

handwriting-plot

handwriting-1-plot

Representing functions by basis functions

A basis function system is a set of known functions \(\phi_k\) that are mathematically independent of each other and that have the property that we can approximate arbitrarily well any function by taking a weighted sum or linear combination of a sufficiently large number \(K\) of these functions.

Basis function procedures represent a function \(x\) by a linear expansion

\[x(t) = \sum_{k=1}^K c_k\phi_k(t) = \mathbf{c}^{'}\mathbf{\phi}(t)\]

in terms of \(K\) known basis functions \(\phi_k\).

Most functional data analyses these days involve either a Fourier basis for periodic data, or a B-spline basis for non-periodic data.

Basis

\[1, sin(\omega t), cos(\omega t), sin(2\omega t), cos(2\omega t), ..., sin(m\omega t), cos(m\omega t), ...\]

Spline functions and degree of freedom

Chap4. Smoothing functional data by least squares

Ordinary least squares estimates

Assume we have observations for a single curve

\[y_i = x(t_i) + \epsilon\]

and we want to estimate (determine the coefficients of the expansion \(c_k\))

\[ x(t) \approx \sum_{k=1}^K c_k\phi_k(t)\]

by minimizing the least squared errors:

\[SSE(\mathbf{y}|\mathbf{c}) = \sum_{j=1}^n[y_j - \sum_{k=1}^K c_k\phi_k(t_j)]^2\]

\[SSE(\mathbf{y}|\mathbf{c}) = (\mathbf{y}-\mathbf{\phi}\mathbf{c})^{'}(\mathbf{y}-\mathbf{\phi}\mathbf{c})\]

where \(\mathbf{c}\) is a vector of length \(K\) and \(\mathbf{\phi}\) is \(n\times K\).

Weighted least squares estimates

\[SSE(\mathbf{y}|\mathbf{c}) = (\mathbf{y}-\mathbf{\phi}\mathbf{c})^{'}\mathbf{\Sigma}_e^{-1}(\mathbf{y}-\mathbf{\phi}\mathbf{c})\]

\[\hat{\mathbf{c}} = (\mathbf{\phi}^T\mathbf{\Sigma}_e^{-1}\mathbf{\phi})^{-1}\mathbf{\phi}^T\mathbf{\Sigma}_e^{-1}\mathbf{y}\]

Choosing the number \(K\) of basis functions

\[MSE[\hat{x}(t)] = Bias^2[\hat{x}(t)] + Var[\hat{x}(t)]\]

bias-var-trade-plot

Computing sampling variances and confidence limits

Estimation \(\mathbf{\Sigma}_e\)

Fitting data by localized least squares

Chap5. Smoothing functional data with a roughness penalty

Smoothing penalties

\[PENSSE_{\lambda}(x|\mathbf{y}) = (\mathbf{y} - x(\mathbf{t}))^T \mathbf{W} (\mathbf{y} - x(\mathbf{t})) + \lambda \times \text{PEN}(x)\]

where \(\text{PEN}(x)\) measures "roughness" of \(x\).

\[\text{PEN}(x) = \int [D^2 x(s)]^2 ds\]

The structure of a smoothing spline

Calculating the Penalized Fit

\[x(t) = \phi(t)^T \mathbf{c}\]

has the solution

\[\hat{\mathbf{c}} = (\mathbf{\phi}^T\mathbf{W}\mathbf{\phi})^{-1}\mathbf{\phi}^T\mathbf{W}\mathbf{y}\]

\[\int [D^m x(s)]^2 ds = \int \mathbf{c}^T[D^m\phi(s)][D^m\phi(s)]^T\mathbf{c}ds = \mathbf{c}^T\mathbf{R}\mathbf{c}\]

\[\hat{\mathbf{c}} = (\mathbf{\phi}^T\mathbf{W}\mathbf{\phi} + \lambda \mathbf{R})^{-1}\mathbf{\phi}^T\mathbf{W}\mathbf{y}\]

\[\hat{\mathbf{y}} = \mathbf{\phi}(\mathbf{\phi}^T\mathbf{W}\mathbf{\phi} + \lambda \mathbf{R})^{-1}\mathbf{\phi}^T\mathbf{W}\mathbf{y} = \mathbf{S}(\lambda)\mathbf{y}\]

More General Smoothing Penalties

\[L_x = D^3x + \omega^2 Dx\]

Linear Smooths and Degrees of Freedom

\[df(\lambda) = \text{trace}[\mathbf{S}(\lambda)]\]

Choosing Smoothing Parameters: Cross Validation

There are a number of data-driven methods for choosing smoothing parameters.

\[\text{GCV}(\lambda) = \frac{\sum (y_i - x_{\lambda}(t_i))^2}{[\text{trace}(\mathbf{I} - \mathbf{S}(\lambda))]^2}\]